Desde hace mucho tiempo, el hombre se ha visto ante la necesidad de tener que repartir cantidades de cosas entre personas, dándole a cada una el mismo número de unidades.
A través de la práctica el hombre descubrió que este problema a veces sí tenía solución y a veces no. Este hecho hizo que se estudiase que relación se encontraba entre los números en los que este problema sí tenía solución y los números en los que no. De esta forma comenzó a estudiarse la divisibilidad.
Definición
Un número a se puede dividir por otro número b (o también, a es divisible por b), cuando con el número de unidades que indique el número a se puedan hacer tantos números como indique el número b, teniendo todos estos grupos el mismo número de unidades.
Un número a se puede dividir por otro número b (o también, a es divisible por b), cuando con el número de unidades que indique el número a se puedan hacer tantos números como indique el número b, teniendo todos estos grupos el mismo número de unidades.
NUMEROS PRIMOS
Un número es primo cuando es entero positivo, distinto de 0 y 1 y que únicamente se puede dividir por sí mismo y por 1 para dar una solución exacta (por tanto, para todos los otros números por los que intentemos dividir el número primo no dará solución exacta)
Ejemplos:Divisores de 3= {1, 3} => es primo
D(7)={1, 7} => es primo
D(9)={1, 3, 9} => no es primo, es divisible por 3 además de 1 y 9
MINIMO COMUN MULTIPLO
El mínimo común múltiplo (m.c.m.) de dos o más números naturales es el menor número natural que es múltiplo de todos ellos. Sólo se aplica con números naturales, es decir, no se usan decimales ni números negativos.
Suma de fracciones
El m.c.m. se puede emplear para sumar fracciones de distinto denominador, en el ejemplo, para poder efectuar la suma, se debe buscar el mínimo común múltiplo entre los divisores (6 y 33) que corresponde al número 66, luego se amplifican las fracciones y es posible la suma:
Expresiones algebraicas
El m.c.m. para dos expresiones algebraicas, corresponde a la expresión algebraica de menor coeficiente numérico y de menor grado que es divisible exactamente por cada una de las expresiones dadas. Esta teoría es de suma importancia para las fracciones y ecuaciones.[1]
MAXIMO COMUN DIVISOR
En matemáticas el máximo común divisor (abreviado mcd o m.c.d.) de dos o más números enteros es el mayor número que los divide sin dejar resto.
Cálculo del MCD
Los dos métodos más utilizados para el cálculo del máximo común divisor de dos números son:
Descomposición en factores primos
El máximo común divisor de dos números puede calcularse determinando la descomposición en factores primos de los dos números y tomando los factores comunes elevados a la menor potencia, el producto de los cuales será el mcd. Por ejemplo, para calcular el máximo común divisor de 48 y de 60 obtenemos la factorización en factores primosDe las factorizaciones de 48 y 60:
Aplicaciones
El m.c.d. se utiliza para simplificar fracciones. Por ejemplo, para simplificar la fracción
El m.c.d. también se utiliza para calcular el mínimo común múltiplo de dos números. En efecto, el producto de los dos números es igual al producto de su máximo común divisor por su mínimo común múltiplo.